Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Oxf Open Immunol ; 2(1): iqaa007, 2021.
Article in English | MEDLINE | ID: covidwho-2262123

ABSTRACT

COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients' long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation.

2.
Oxf Open Immunol ; 2(1): iqab016, 2021.
Article in English | MEDLINE | ID: covidwho-1860899

ABSTRACT

Destabilization of balanced immune cell numbers and frequencies is a common feature of viral infections. This occurs due to, and further enhances, viral immune evasion and survival. Since the discovery of the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), which manifests in coronavirus disease 2019 (COVID-19), a great number of studies have described the association between this virus and pathologically increased or decreased immune cell counts. In this review, we consider the absolute and relative changes to innate and adaptive immune cell numbers, in COVID-19. In severe disease particularly, neutrophils are increased, which can lead to inflammation and tissue damage. Dysregulation of other granulocytes, basophils and eosinophils represents an unusual COVID-19 phenomenon. Contrastingly, the impact on the different types of monocytes leans more strongly to an altered phenotype, e.g. HLA-DR expression, rather than numerical changes. However, it is the adaptive immune response that bears the most profound impact of SARS-CoV-2 infection. T cell lymphopenia correlates with increased risk of intensive care unit admission and death; therefore, this parameter is particularly important for clinical decision-making. Mild and severe diseases differ in the rate of immune cell counts returning to normal levels post disease. Tracking the recovery trajectories of various immune cell counts may also have implications for long-term COVID-19 monitoring. This review represents a snapshot of our current knowledge, showing that much has been achieved in a short period of time. Alterations in counts of distinct immune cells represent an accessible metric to inform patient care decisions or predict disease outcomes.

3.
Oxf Open Immunol ; 2(1): iqab010, 2021.
Article in English | MEDLINE | ID: covidwho-1410502

ABSTRACT

The rapid design and implementation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is testament to a successfully coordinated global research effort. While employing a variety of different technologies, some of which have been used for the first time, all approved vaccines demonstrate high levels of efficacy with excellent safety profiles. Despite this, there remains an urgent global demand for coronavirus disease 2019 vaccines that require further candidates to pass phase 3 clinical trials. In the expectation of SARS-CoV-2 becoming endemic, researchers are looking to adjust the vaccine constructs to tackle emerging variants. In this review, we outline different platforms used for approved vaccines and summarize latest research data with regards to immunogenicity, dosing regimens and efficiency against emerging variants.

4.
Oxf Open Immunol ; 2(1): iqab001, 2021.
Article in English | MEDLINE | ID: covidwho-1288091

ABSTRACT

The role of obesity in the pathophysiology of respiratory virus infections has become particularly apparent during the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, where obese patients are twice as likely to suffer from severe coronavirus disease 2019 (COVID-19) than healthy weight individuals. Obesity results in disruption of systemic lipid metabolism promoting a state of chronic low-grade inflammation. However, it remains unclear how these underlying metabolic and cellular processes promote severe SARS-CoV-2 infection. Emerging data in SARS-CoV-2 and Influenza A virus (IAV) infections show that viruses can further subvert the host's altered lipid metabolism and exploit obesity-induced alterations in immune cell metabolism and function to promote chronic inflammation and viral propagation. In this review, we outline the systemic metabolic and immune alterations underlying obesity and discuss how these baseline alterations impact the immune response and disease pathophysiology. A better understanding of the immunometabolic landscape of obese patients may aid better therapies and future vaccine design.

5.
Oxf Open Immunol ; 1(1): iqaa005, 2020.
Article in English | MEDLINE | ID: covidwho-1288090

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a global health crisis and will likely continue to impact public health for years. As the effectiveness of the innate immune response is crucial to patient outcome, huge efforts have been made to understand how dysregulated immune responses may contribute to disease progression. Here we have reviewed current knowledge of cellular innate immune responses to SARS-CoV-2 infection, highlighting areas for further investigation and suggesting potential strategies for intervention. We conclude that in severe COVID-19 initial innate responses, primarily type I interferon, are suppressed or sabotaged which results in an early interleukin (IL)-6, IL-10 and IL-1ß-enhanced hyperinflammation. This inflammatory environment is driven by aberrant function of innate immune cells: monocytes, macrophages and natural killer cells dispersing viral pathogen-associated molecular patterns and damage-associated molecular patterns into tissues. This results in primarily neutrophil-driven pathology including fibrosis that causes acute respiratory distress syndrome. Activated leukocytes and neutrophil extracellular traps also promote immunothrombotic clots that embed into the lungs and kidneys of severe COVID-19 patients, are worsened by immobility in the intensive care unit and are perhaps responsible for the high mortality. Therefore, treatments that target inflammation and coagulation are promising strategies for reducing mortality in COVID-19.

6.
Oxf Open Immunol ; 1(1): iqaa004, 2020.
Article in English | MEDLINE | ID: covidwho-1288089

ABSTRACT

The coronavirus infectious disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a world health concern and can cause severe disease and high mortality in susceptible groups. While vaccines offer a chance to treat disease, prophylactic and anti-viral treatments are still of vital importance, especially in context of the mutative ability of this group of viruses. Therefore, it is essential to elucidate the molecular mechanisms of viral entry, innate sensing and immune evasion of SARS-CoV-2, which control the triggers of the subsequent excessive inflammatory response. Viral evasion strategies directly target anti-viral immunity, counteracting host restriction factors and hijacking signalling pathways to interfere with interferon production. In Part I of this review, we examine SARS-CoV-2 viral entry and the described immune evasion mechanisms to provide a perspective on how the failure in initial viral sensing by infected cells can lead to immune dysregulation causing fatal COVID-19, discussed in Part II.

8.
J Am Soc Nephrol ; 32(1): 151-160, 2021 01.
Article in English | MEDLINE | ID: covidwho-1080996

ABSTRACT

BACKGROUND: Early reports indicate that AKI is common among patients with coronavirus disease 2019 (COVID-19) and associated with worse outcomes. However, AKI among hospitalized patients with COVID-19 in the United States is not well described. METHODS: This retrospective, observational study involved a review of data from electronic health records of patients aged ≥18 years with laboratory-confirmed COVID-19 admitted to the Mount Sinai Health System from February 27 to May 30, 2020. We describe the frequency of AKI and dialysis requirement, AKI recovery, and adjusted odds ratios (aORs) with mortality. RESULTS: Of 3993 hospitalized patients with COVID-19, AKI occurred in 1835 (46%) patients; 347 (19%) of the patients with AKI required dialysis. The proportions with stages 1, 2, or 3 AKI were 39%, 19%, and 42%, respectively. A total of 976 (24%) patients were admitted to intensive care, and 745 (76%) experienced AKI. Of the 435 patients with AKI and urine studies, 84% had proteinuria, 81% had hematuria, and 60% had leukocyturia. Independent predictors of severe AKI were CKD, men, and higher serum potassium at admission. In-hospital mortality was 50% among patients with AKI versus 8% among those without AKI (aOR, 9.2; 95% confidence interval, 7.5 to 11.3). Of survivors with AKI who were discharged, 35% had not recovered to baseline kidney function by the time of discharge. An additional 28 of 77 (36%) patients who had not recovered kidney function at discharge did so on posthospital follow-up. CONCLUSIONS: AKI is common among patients hospitalized with COVID-19 and is associated with high mortality. Of all patients with AKI, only 30% survived with recovery of kidney function by the time of discharge.


Subject(s)
Acute Kidney Injury/etiology , COVID-19/complications , SARS-CoV-2 , Acute Kidney Injury/epidemiology , Acute Kidney Injury/therapy , Acute Kidney Injury/urine , Aged , Aged, 80 and over , COVID-19/mortality , Female , Hematuria/etiology , Hospital Mortality , Hospitals, Private/statistics & numerical data , Hospitals, Urban/statistics & numerical data , Humans , Incidence , Inpatients , Leukocytes , Male , Middle Aged , New York City/epidemiology , Proteinuria/etiology , Renal Dialysis , Retrospective Studies , Treatment Outcome , Urine/cytology
9.
Oxf Open Immunol ; 2(1): iqab003, 2021.
Article in English | MEDLINE | ID: covidwho-1057876

ABSTRACT

Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity.

10.
Clin Infect Dis ; 71(11): 2933-2938, 2020 12 31.
Article in English | MEDLINE | ID: covidwho-1003539

ABSTRACT

BACKGROUND: There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison group. METHODS: We identified 88 PLWH hospitalized with laboratory-confirmed COVID-19 in our hospital system in New York City between 12 March and 23 April 2020. We collected data on baseline clinical characteristics, laboratory values, HIV status, treatment, and outcomes from this group and matched comparators (1 PLWH to up to 5 patients by age, sex, race/ethnicity, and calendar week of infection). We compared clinical characteristics and outcomes (death, mechanical ventilation, hospital discharge) for these groups, as well as cumulative incidence of death by HIV status. RESULTS: Patients did not differ significantly by HIV status by age, sex, or race/ethnicity due to the matching algorithm. PLWH hospitalized with COVID-19 had high proportions of HIV virologic control on antiretroviral therapy. PLWH had greater proportions of smoking (P < .001) and comorbid illness than uninfected comparators. There was no difference in COVID-19 severity on admission by HIV status (P = .15). Poor outcomes for hospitalized PLWH were frequent but similar to proportions in comparators; 18% required mechanical ventilation and 21% died during follow-up (compared with 23% and 20%, respectively). There was similar cumulative incidence of death over time by HIV status (P = .94). CONCLUSIONS: We found no differences in adverse outcomes associated with HIV infection for hospitalized COVID-19 patients compared with a demographically similar patient group.


Subject(s)
COVID-19 , Coronavirus , HIV Infections , COVID-19/mortality , COVID-19/therapy , HIV , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , New York City/epidemiology , Patient Discharge , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
11.
J Med Internet Res ; 22(11): e24018, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-979821

ABSTRACT

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Machine Learning/standards , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cohort Studies , Electronic Health Records , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Hospitals , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Prognosis , ROC Curve , Risk Assessment/methods , Risk Assessment/standards , SARS-CoV-2 , Young Adult
12.
Elife ; 92020 12 15.
Article in English | MEDLINE | ID: covidwho-977809

ABSTRACT

Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context.


Subject(s)
Aging/immunology , Autophagy/immunology , CD8-Positive T-Lymphocytes/immunology , Respiratory Syncytial Virus Vaccines/immunology , Spermidine/pharmacology , Adjuvants, Immunologic/pharmacology , Adult , Aged , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Humans , Immunologic Memory/immunology , Interferon-gamma/blood , Jurkat Cells , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/metabolism , Respiratory Syncytial Viruses/immunology , Spermidine/blood , Vaccination , Young Adult
13.
Nat Rev Immunol ; 20(12): 719, 2020 12.
Article in English | MEDLINE | ID: covidwho-949618
14.
J Gen Intern Med ; 35(10): 2838-2844, 2020 10.
Article in English | MEDLINE | ID: covidwho-723327

ABSTRACT

BACKGROUND: Data on patients with coronavirus disease 2019 (COVID-19) who return to hospital after discharge are scarce. Characterization of these patients may inform post-hospitalization care. OBJECTIVE: To describe clinical characteristics of patients with COVID-19 who returned to the emergency department (ED) or required readmission within 14 days of discharge. DESIGN: Retrospective cohort study of SARS-COV-2-positive patients with index hospitalization between February 27 and April 12, 2020, with ≥ 14-day follow-up. Significance was defined as P < 0.05 after multiplying P by 125 study-wide comparisons. PARTICIPANTS: Hospitalized patients with confirmed SARS-CoV-2 discharged alive from five New York City hospitals. MAIN MEASURES: Readmission or return to ED following discharge. RESULTS: Of 2864 discharged patients, 103 (3.6%) returned for emergency care after a median of 4.5 days, with 56 requiring inpatient readmission. The most common reason for return was respiratory distress (50%). Compared with patients who did not return, there were higher proportions of COPD (6.8% vs 2.9%) and hypertension (36% vs 22.1%) among those who returned. Patients who returned also had a shorter median length of stay (LOS) during index hospitalization (4.5 [2.9,9.1] vs 6.7 [3.5, 11.5] days; Padjusted = 0.006), and were less likely to have required intensive care on index hospitalization (5.8% vs 19%; Padjusted = 0.001). A trend towards association between absence of in-hospital treatment-dose anticoagulation on index admission and return to hospital was also observed (20.9% vs 30.9%, Padjusted = 0.06). On readmission, rates of intensive care and death were 5.8% and 3.6%, respectively. CONCLUSIONS: Return to hospital after admission for COVID-19 was infrequent within 14 days of discharge. The most common cause for return was respiratory distress. Patients who returned more likely had COPD and hypertension, shorter LOS on index-hospitalization, and lower rates of in-hospital treatment-dose anticoagulation. Future studies should focus on whether these comorbid conditions, longer LOS, and anticoagulation are associated with reduced readmissions.


Subject(s)
Coronavirus Infections/epidemiology , Emergency Service, Hospital/statistics & numerical data , Patient Readmission/statistics & numerical data , Pneumonia, Viral/epidemiology , Aged , Anticoagulants/administration & dosage , Betacoronavirus , COVID-19 , Case-Control Studies , Comorbidity , Coronavirus Infections/therapy , Female , Humans , Hypertension/epidemiology , Length of Stay/statistics & numerical data , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiratory Distress Syndrome/epidemiology , Retrospective Studies , SARS-CoV-2
15.
Nat Rev Immunol ; 20(10): 590, 2020 10.
Article in English | MEDLINE | ID: covidwho-711933
17.
J Am Coll Cardiol ; 76(5): 533-546, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-574585

ABSTRACT

BACKGROUND: The degree of myocardial injury, as reflected by troponin elevation, and associated outcomes among U.S. hospitalized patients with coronavirus disease-2019 (COVID-19) are unknown. OBJECTIVES: The purpose of this study was to describe the degree of myocardial injury and associated outcomes in a large hospitalized cohort with laboratory-confirmed COVID-19. METHODS: Patients with COVID-19 admitted to 1 of 5 Mount Sinai Health System hospitals in New York City between February 27, 2020, and April 12, 2020, with troponin-I (normal value <0.03 ng/ml) measured within 24 h of admission were included (n = 2,736). Demographics, medical histories, admission laboratory results, and outcomes were captured from the hospitals' electronic health records. RESULTS: The median age was 66.4 years, with 59.6% men. Cardiovascular disease (CVD), including coronary artery disease, atrial fibrillation, and heart failure, was more prevalent in patients with higher troponin concentrations, as were hypertension and diabetes. A total of 506 (18.5%) patients died during hospitalization. In all, 985 (36%) patients had elevated troponin concentrations. After adjusting for disease severity and relevant clinical factors, even small amounts of myocardial injury (e.g., troponin I >0.03 to 0.09 ng/ml; n = 455; 16.6%) were significantly associated with death (adjusted hazard ratio: 1.75; 95% CI: 1.37 to 2.24; p < 0.001) while greater amounts (e.g., troponin I >0.09 ng/dl; n = 530; 19.4%) were significantly associated with higher risk (adjusted HR: 3.03; 95% CI: 2.42 to 3.80; p < 0.001). CONCLUSIONS: Myocardial injury is prevalent among patients hospitalized with COVID-19; however, troponin concentrations were generally present at low levels. Patients with CVD are more likely to have myocardial injury than patients without CVD. Troponin elevation among patients hospitalized with COVID-19 is associated with higher risk of mortality.


Subject(s)
Cardiovascular Diseases/complications , Comorbidity , Coronavirus Infections/complications , Myocardial Infarction/complications , Myocardium/pathology , Pneumonia, Viral/complications , Troponin I/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Cardiovascular Diseases/epidemiology , Coronavirus Infections/epidemiology , Electronic Health Records , Female , Heart Injuries/complications , Heart Injuries/epidemiology , Hospitalization , Humans , Incidence , Male , Middle Aged , Myocardial Infarction/epidemiology , New York City , Pandemics , Pneumonia, Viral/epidemiology , Prevalence , Risk Factors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL